Connected Automated Driving

TOGETHER, SHAPING THE FUTURE

Day 2

Session: International Cooperation

International Cooperation Creating Synergy in Research on Connected and Automated Driving

Steven SHLADOVER

Program Manager, Mobility

University of California PATH Program

steve@path.berkeley.edu

Benefits of International Cooperation

- Division of labor in tackling large technical challenges
- Reducing duplications of effort
- Learning from diverse other approaches (alternate solutions to problems)
- Economies of scale in developing solutions for a global rather than a regional market
- Facilitating progress toward global standards

Priority Targets for Research Cooperation

- Fundamental scientific research to enable future technological advances
 - Software safety design methodology
 - Efficient verification and validation methods
- Field testing methods (design of experiments and data collection and analysis)
- Impact assessment methods
- Safety assurance methods, especially for nondeterministic systems
- Human ability to interact with automated driving systems (inside and outside vehicles)
- Protection from cyber-threats

Topics Less Suited for Cooperation

- Design and development of in-vehicle technologies and driver interfaces (competitive)
- Infrastructure cooperation with CAVs (too much variability across countries)
- Impact assessment case studies
- Public education and outreach
- Government regulatory constraints

International Standards

- Significant contrasts in national approaches:
 - Prescriptive vs. descriptive
 - Voluntary vs. mandatory
- Timing is sensitive:
 - Early enough to avoid impediments from multiple entrenched approaches
 - Late enough to benefit from real-world practical experience
- Must be justified based on real benefits:
 - Safety
 - Economic efficiency (economies of scale)
 - User comprehension