Road Vehicle Automation: Reality, Hype and Policy Implications

Steven E. Shladover, Sc.D.
California PATH Program
University of California, Berkeley
April 9, 2015
Outline

• Historical development of automation
• Levels of road vehicle automation
• Why cooperation is needed
• Impacts of each level of automation on travel (and when?)
• Technical challenges
• State regulatory challenges
• Other policy issues
• What should California do?
Policy and regulations are NOT slowing progress on automation –

The main limitations are technological!
History of Highway Automation in the U.S.

- 1939 – General Motors “Futurama” exhibit
- 1949 – RCA technical explorations begin
- 1950s – GM/RCA collaborative research
- 1950s – GM “Firebird II” concept car
- 1964 – GM “Futurama II” exhibit
- 1964-80 – Research by Fenton at OSU
- 1986 – California PATH program started
- 1994-98 – National AHS Consortium
- 2003 – PATH automated bus and truck demos
- 2010 – Google announcement
General Motors 1939 Futurama

General Motors' Futurama
1939 New York World's Fair
GM Firebird II Publicity Video
GM Technology in 1960
Automatically Controlled
1965 Plymouth at
Transportation Research Center of Ohio
The Ohio State University (OSU)
1977
Autonomous and Cooperative ITS

Autonomous ITS (Unconnected) Systems

Cooperative ITS (Connected Vehicle) Systems

Automated Driving Systems
SAE J3016 Definitions – Levels of Automation

<table>
<thead>
<tr>
<th>SAE Level</th>
<th>Name</th>
<th>Narrative Definition</th>
<th>Execution of Steering/ Acceleration/ Deceleration</th>
<th>Monitoring of Driving Environment</th>
<th>Fallback Performance of Dynamic Driving Task</th>
<th>System Capability (Driving Modes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Automation</td>
<td>the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Human driver</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task</td>
<td>Human driver and system</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td>the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task</td>
<td>System</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation</td>
<td>the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>4</td>
<td>High Automation</td>
<td>the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>5</td>
<td>Full Automation</td>
<td>the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>All driving modes</td>
</tr>
</tbody>
</table>

© Copyright 2014 SAE
Example Systems at Each Automation Level

<table>
<thead>
<tr>
<th>Level</th>
<th>Example Systems</th>
<th>Driver Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adaptive Cruise Control OR</td>
<td>Must drive other function and monitor driving</td>
</tr>
<tr>
<td></td>
<td>Lane Keeping Assistance</td>
<td>driving environment</td>
</tr>
<tr>
<td>2</td>
<td>Adaptive Cruise Control AND</td>
<td>Must monitor driving environment (system nags driver</td>
</tr>
<tr>
<td></td>
<td>Lane Keeping Assistance</td>
<td>to try to ensure it)</td>
</tr>
<tr>
<td></td>
<td>Traffic Jam Assist (Mercedes)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Traffic Jam Pilot</td>
<td>May read a book, text, or web surf, but be prepared to</td>
</tr>
<tr>
<td></td>
<td>Automated parking</td>
<td>intervene when needed</td>
</tr>
<tr>
<td>4</td>
<td>Highway driving pilot</td>
<td>May sleep, and system can revert to minimum risk</td>
</tr>
<tr>
<td></td>
<td>Closed campus driverless shuttle</td>
<td>condition if needed</td>
</tr>
<tr>
<td></td>
<td>Driverless valet parking in garage</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Automated taxi (even for children)</td>
<td>No driver needed</td>
</tr>
<tr>
<td></td>
<td>Car-share repositioning system</td>
<td></td>
</tr>
</tbody>
</table>
Cooperation Augments Sensing

• Autonomous vehicles are “deaf-mute”
• Cooperative vehicles can “talk” and “listen” as well as “seeing”, using 5.9 GHz DSRC comm.
 – NHTSA regulatory mandate in process
• Communicate vehicle performance and condition directly rather than sensing indirectly
 – Faster, richer and more accurate information
 – Longer range
• Cooperative decision making for system benefits
• Enables closer separations between vehicles
• Expands performance envelope – safety, capacity, efficiency and ride quality
Challenges to Achieving Cooperation

• “Chicken and egg” problem – who equips first?
 – Regulatory “push” to seed the vehicle market

• Benefits scale strongly with market penetration
 – Need to concentrate equipped vehicles in proximity to each other

• Deployment opportunity using managed lanes
 – Economic incentives
 – Productivity increases
Examples of Performance That is Only Achievable Through Cooperation

- **Vehicle-Vehicle Cooperation**
 - Cooperative adaptive cruise control (CACC) to eliminate traffic shock waves
 - Automated merging of vehicles, starting beyond line of sight, to smooth traffic
 - Multiple-vehicle automated platoons at short separations, to increase capacity
 - Truck platoons at short enough spacings to reduce drag and save energy

- **Vehicle-Infrastructure Cooperation**
 - Speed harmonization to maximize flow
 - Speed reduction approaching queue for safety
 - Precision docking of transit buses
 - Precision snowplow control
Example 1 – Production Autonomous ACC (at minimum gap 1.0 s)
Example 2 – Cooperative ACC (at minimum gap 0.6 s)
Other Functions Only Possible with Cooperation
Partial Automation (Level 2) Impacts

- Probably only on limited-access highways
- Somewhat increased driving comfort and convenience (but driver still needs to be actively engaged)
- Possible safety increase, depending on effectiveness of driver engagement
 - Safety concerns if driver tunes out
- (only if cooperative) Increases in energy efficiency and traffic throughput
- When? Available now (Mercedes S-class)
Conditional Automation (Level 3) Impacts

- Driving comfort and convenience increase
 - Driver can do other things while driving, so value of travel time is reduced
 - Limited by requirement to be able to re-take control of vehicle in a few seconds when alerted

- Safety uncertain, depending on ability to re-take control in emergency conditions

- *(only if cooperative)* Increases in efficiency and traffic throughput

- When? Unclear – safety concerns could impede introduction
High Automation (Level 4) Impacts – General-purpose light duty vehicles

- May only be available in some places (limited access highways, managed lanes)
- Large gain in driving comfort and convenience on available parts of trip (driver can sleep)
 - Significantly reduced value of time
- Safety improvement, based on automatic transition to minimal risk condition
- (only if cooperative) Significant increases in energy efficiency and traffic throughput from close-coupled platooning
- When? Starting 2020 – 2025?
High Automation (Level 4) Impacts – Special applications

• Buses on separate transitways
 – Narrow right of way – easier to fit in corridors
 – Rail-like quality of service at lower cost
• Heavy trucks on dedicated truck lanes
 – (cooperative) Platooning for energy and emission savings, higher capacity
• Automated (driverless) valet parking
 – More compact parking garages
• Driverless shuttles within campuses or pedestrian zones
 – Facilitating new urban designs
• When? Could be just a few years away
Full Automation (Level 5) Impacts

- Electronic taxi service for mobility-challenged travelers (young, old, impaired)
- Shared vehicle fleet repositioning (driverless)
- Driverless urban goods pickup and delivery
- Full “electronic chauffeur” service

- Ultimate comfort and convenience
 - Travel time value plunge
- *(if cooperative)* Large energy efficiency and road capacity gains
- When? Many decades… (Ubiquitous operation without driver is a huge technical challenge)
Personal Estimates of Market Introductions

<table>
<thead>
<tr>
<th>Location</th>
<th>Level 1 (ACC)</th>
<th>Level 2 (ACC+ LKA)</th>
<th>Level 3 Conditional Automation</th>
<th>Level 4 High Automation</th>
<th>Level 5 Full Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everywhere</td>
<td>Now</td>
<td>~2020s</td>
<td>~2025s</td>
<td>~2030s</td>
<td>>>2040</td>
</tr>
<tr>
<td>Some urban streets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus or pedestrian zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited-access highway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully Segregated Guideway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Color Key:
- **Now**
- **~2020s**
- **~2025s**
- **~2030s**
- **>>2040**
Safety Challenges for Full Automation

• Must be “significantly” safer than today’s driving baseline (2X? 5X? 10X?)
 – Fatal crash MTBF > 3.3 million vehicle hours
 – Injury crash MTBF > 65,000 vehicle hours
• How many hours of testing are needed to show safety better than this?
• Cannot prove safety of software for safety-critical applications
• Complexity – cannot test all possible combinations of input conditions and their timing
• How many hours of continuous, unassisted automated driving have been achieved in real traffic under diverse conditions?
Safety and the Driver

• If maximum safety is indeed the goal...
 – ADD the system’s vigilance to the driver’s vigilance instead of bypassing the driver’s vigilance
 – Comprehensive hazard warnings plus some control assistance (e.g., ACC)

• If the driver is out of the control loop (texting, sleeping, incapable, or not present), the system has to handle EVERYTHING...
 – Bad scenarios none of us can imagine
 – Ethically untenable scenarios
State DMV Regulatory Issues

• Due diligence in protecting general public while unproven systems are being tested among them
• Trying to ensure that general public really understands limitations of their vehicles
• Detecting unsafe systems as early as possible (earlier than NHTSA?)
• Adapting or re-interpreting existing codes:
 – Responding to law enforcement officer commands
 – Exchanging insurance information after crashes
 – Restrictions on driver behaviors (DUI, open alcohol containers, cell phones, texting, distraction, recklessness…)
 – Protection of unattended children…
Fundamental Challenges in Defining Automation Regulations

• Balancing need to protect public safety with desire to encourage technological innovation
• Automation blurs the traditional boundary between federal responsibility for regulating new vehicle equipment and state responsibility for regulating how vehicles are operated
• Lack of technical standards to provide baseline references for performance, safety or testing protocols or procedures
• Lack of national standards and diversity of state approaches
• Cultural differences between automotive and information technology industries
• Self-certification vs. third-party certification
Basic Steps in California Process

- Sept. 2012 – Legislature created VC38750 and mandated DMV develop regulations by 1/1/15
- DMV formed statewide steering committee of affected agencies to provide advice (Caltrans, CHP, OTS, Insurance, NHTSA regional office)
- DMV contracted with PATH in 7/13 for technical advice
- DMV developed testing regulations, which were adopted 5/19/14. (Testers require state permits as of 9/16/14.)
- DMV drafted regulations on public operation, with PATH advice – to be released for public comment at unknown future time
- Multiple administrative steps required for public operation regulations before adoption
- Regulations will be updated periodically
Legislative and Administrative Rules

• Legislative requirements (in CA Vehicle Code) are legally binding and can only be changed by legislation
 – Definitions
 – Some specific safety provisions
 – Bonding
 – Timelines

• DMV needs to write administrative rules (in CA Code of Regulations) to implement legislative requirements
 – Some specific mandates from Legislature
 – Clarifications of ambiguous issues in legislation
 – Specific guidance on how to implement legislative intent
Systems Covered by Regulations

• "Autonomous technology" means technology that has the capability to drive a vehicle without the active physical control or monitoring by a human operator.

• "Autonomous vehicle" means any vehicle equipped with autonomous technology that has been integrated into that vehicle.

• An autonomous vehicle does not include a vehicle that is equipped with one or more collision avoidance systems, including, but not limited to, electronic blind spot assistance, automated emergency braking systems, park assist, adaptive cruise control, lane keep assist, lane departure warning, traffic jam and queuing assist, or other similar systems that enhance safety or provide driver assistance, but are not capable, collectively or singularly, of driving the vehicle without the active control or monitoring of a human operator.

→ This means that SAE Level 3 or higher systems are covered, except:

• “If the operator does not or is unable to take control of the autonomous vehicle, the autonomous vehicle shall be capable of coming to a complete stop.” (which effectively prohibits many Level 3 systems)
Testing on Public Roads (Published)

• Legislative:
 – $5 M bond/proof of self-insurance
 – Test driver must be designated by manufacturer
 – “The driver shall be seated in the driver's seat, monitoring the safe operation of the AV, and capable of taking over immediate manual control…”

• Administrative:
 – Application to test covers specific vehicles and test drivers
 – Many test driver qualifications (driving record, training)
 – No motorcycle, commercial or heavy vehicle testing
 – Prior “controlled testing” under comparable conditions
 – Report total amount of test driving and all disengagements associated with failures or driving hazards
 – (no provision for naturalistic testing with naïve drivers)
Deployment for Public Operation

• Legislative highlights in CA Vehicle Code:
 – “The AV shall allow the operator to take control in multiple manners, including, without limitation, through the use of the brake, the accelerator pedal, or the steering wheel…”
 – Separate EDR for “autonomous technology sensor data” for at least 30 seconds
 – “The department [DMV] shall notify the Legislature of the receipt of an application from a manufacturer seeking approval to operate an AV capable of operating without the presence of a driver inside the vehicle…”
 – $5 M bond/proof of self-insurance
Deployment for Public Operation

- Potential administrative regulation topics:
 - Identification as AV on registration
 - Specify valid types of driving environments ("areas of operation")
 - Evidence of minimum behavioral competency for operation in these areas
 - Safety monitoring plan
 - Consumer education plan
 - Information privacy disclosure
 - Vehicle labeling
 - Operator responsibility for violations
 - No special driver training or licensing
Additional Issues for Driverless Operation

- Special license plate
- Emergency stop mechanisms for occupants
- Communication to owner/operator for emergency conditions
- Owner/operator information available for post-incident data exchanges
- Legislature must be notified of application, with 120-day hold period to decide on need for any additional legislation
What next for state regulations?

• Further updates of California regulations based on public input, experience in the field, new technology developments

• Uncertain prospects for additional state legislation (Google backed off lobbying)

• Industry standards development proceeding, but very slowly

• Everybody waiting for NHTSA to act (but don’t hold your breath)
 – Their 5/30/13 policy statement advised states to hold off on authorizing public use of Level 3 or above
Broader Policy Issues for National Consideration (State, local level)

• Define business models for funding supporting infrastructure deployment
• Define public policy actions to facilitate automation implementation
• Facilitate national harmonization of state goals and regulations
• Clarify Fed/state/local responsibility boundary
• Collect lessons learned from Safety Pilot and CV Pilots
• Lessons learned from other transportation tech. rollouts (e.g. 511, Next Gen air traffic control)
General Recommendations

• Focus on connected vehicle capabilities to provide technology for cooperation first

• For earliest public benefits from automation, focus on transit and trucking applications in protected rights of way
 – Professional drivers and maintenance
 – Direct economic benefits

• To accommodate technology limitations:
 – Partial automation in simplest operating conditions (protected freeway lane cruising)
 – Higher automation only under strict restrictions on speed, weather and infrastructure protection

• Develop enabling technologies for Level 5 automation
CV/AV Actions for State Government

• Outreach to regions and cities about needed or desirable modifications to their infrastructure
• Provide cost-sharing for California teams competing for national projects
• Support field testing in California, facilitating access to roadside infrastructure
AV Actions for State Government

• Study changes needed to roadway infrastructure (communications, pavement markings, signage, cooperative infrastructure)
• Promote development of AV testing sites for industry and researchers
 – Competitiveness for national projects
• Identify sites for early AV field testing with (limited) infrastructure support or protection and facilitate partnerships for national FOTs
• Estimate economic development potential for California being the leader in AV tech.
What to do now?

- Focus on connected vehicle capabilities to provide technology for cooperation
- For earliest public benefits from automation, focus on transit and trucking applications in protected rights of way
 - Professional drivers and maintenance
 - Direct economic benefits
- Capitalize on managed lanes to concentrate equipped vehicles together
- Develop enabling technologies for Level 5 automation (software verification and safety, real-time fault identification and management, hazard detection sensing,...)