This work was performed as part of the Program on Advanced Technology for the Highway (PATH) of the University of California, in cooperation with the State of California, Business and Transportation Agency, Department of Transportation, and the United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification, or regulation.

**November 5, 1990**

(edited 1/91 by A. Bozzini)
This paper has been mechanically scanned. Some errors may have been inadvertently introduced.
Acknowledgements

The authors would like to thank Mr. Patrick Conroy of Caltrans, and Dr. Steven Shladover of the Institute of Transportation Studies at the University of California at Berkeley for providing the impetus to conduct a second ATMS/ATIS symposium. We would also like to thank all the attendees for their participation which helped make the symposium a success. Special thanks to Yonnel Gardes for his help in organizing and arranging the symposium, and to Sherry Parrish and Anna Bozzini at PATH whose efforts were greatly appreciated and also helped make the symposium a successful one. Special thanks also to the Institute of Transportation Studies for providing lunch, refreshments, and parking.
Foreword

The goals of the Program on Advanced Technology for the Highway, PATH, are to increase the capacity of the most used highways, to improve road safety, to decrease traffic congestion and energy consumption, and to improve air quality. It is evolutionary and voluntary. It is a cooperative venture of automakers, electronic companies, local, state and federal governments and universities.

The purpose of the Symposium on Advanced Traffic Management (ATM) and Advanced Traveller Information Systems (ATIS) was to allow researchers involved in ATM/ATIS work to become familiar with other research in the ATM/ATIS areas in the state of California. The symposium was a one-day event held on November 5, 1990, in the Bechtel building on the campus of the University of California at Berkeley. This document provides a brief summary outlining the presentations made at the symposium. Included in the appendix is a list of the names and addresses of the presenters.
# List of Presentations

<table>
<thead>
<tr>
<th>Page</th>
<th>Sneaker</th>
<th>Organization</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. Shladover</td>
<td>UC Berkeley</td>
<td>Introductory Remarks</td>
</tr>
<tr>
<td>3</td>
<td>A. Skabardonis</td>
<td>UC Berkeley</td>
<td>Controlled Strategies and Route Guidance in Signal Controlled Networks</td>
</tr>
<tr>
<td>4</td>
<td>S. Ritchie</td>
<td>UC Irvine</td>
<td>Real-Time Decision Support for Traffic Surveillance and Control</td>
</tr>
<tr>
<td>5</td>
<td>S. Ritchie</td>
<td>UC Irvine</td>
<td>Neural Network Models for Automated Detection of Nonrecurring Traffic Congestion</td>
</tr>
<tr>
<td>6</td>
<td>P. Varaiya</td>
<td>UC Berkeley</td>
<td>IVHS System Architecture</td>
</tr>
<tr>
<td>7</td>
<td>S. Hockaday</td>
<td>Cal Poly, SLO</td>
<td>Traffic Operations Center</td>
</tr>
<tr>
<td></td>
<td>C. MacCarley</td>
<td>Cal Poly, SLO</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td></td>
<td>W. Winter</td>
<td>Caltrans</td>
<td>Inductive Radio Demonstration Project</td>
</tr>
<tr>
<td>8</td>
<td>S.E. Rowe</td>
<td>City of Los Angeles</td>
<td>Smart Corridor</td>
</tr>
<tr>
<td></td>
<td>A. Clelland</td>
<td>JHK &amp; Associates</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>G. Endo</td>
<td>Caltrans</td>
<td>Pathfinder</td>
</tr>
<tr>
<td>10</td>
<td>J. Kay</td>
<td>JHK &amp; Associates</td>
<td>Smart Corridor Statewide Project</td>
</tr>
<tr>
<td>11</td>
<td>A.D. May</td>
<td>UC Berkeley</td>
<td>Potential Benefits of In-Vehicle Information Systems</td>
</tr>
<tr>
<td>12</td>
<td>H. Al-Deek</td>
<td>UC Berkeley</td>
<td>The Role of Dynamic Route Guidance Information Systems in Incident Management</td>
</tr>
<tr>
<td>13</td>
<td>J.C. Lee</td>
<td>UC Berkeley</td>
<td>Interaction Between Highway Information Systems and Congestion Pricing</td>
</tr>
<tr>
<td>14</td>
<td>A. Kanafani</td>
<td>UC Berkeley</td>
<td>Expanding Usage of Cellular Phones: User Profile and Transportation Issues</td>
</tr>
<tr>
<td>15</td>
<td>P. Jovanis</td>
<td>UC Davis</td>
<td>Safety Implication of In-Vehicle Navigation Systems (CADIS)</td>
</tr>
</tbody>
</table>
### List of Presentations (continued)

<table>
<thead>
<tr>
<th>Page</th>
<th>Speaker</th>
<th>Organization</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>M. Mendel</td>
<td>UC Berkeley</td>
<td>Rapid Prototyping of User Interfacing for ATIS</td>
</tr>
<tr>
<td>17</td>
<td>R. Kitamura</td>
<td>UC Davis</td>
<td>Driver Responses to ATIS: A Progress Report</td>
</tr>
<tr>
<td>18</td>
<td>W. Reeker</td>
<td>UC Irvine</td>
<td>A Conflict Model for Analyzing the Impacts of Real-Time Information on Driver Behavioral Choice</td>
</tr>
<tr>
<td>19</td>
<td>T. Turrentine</td>
<td>UC Davis</td>
<td>Consumer Demand for IVHS Technologies</td>
</tr>
<tr>
<td>20</td>
<td>P. Conroy</td>
<td>Caltrans</td>
<td>Advanced Traffic Management Research Projects</td>
</tr>
<tr>
<td>21</td>
<td>Speakers Address List</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

On Monday, November 5, 1990, a group of more than fifty researchers, research managers, and public agency staff people spent a full day in Berkeley reviewing the status of current Caltrans-sponsored research on Advanced Traffic Management Systems (ATMS) and Advanced Traveler Information Systems (ATIS). The work reported here represents the first stages of progress toward Intelligent Vehicle/Highway Systems (IVHS), providing some indications of future directions for the evolution of road transportation in California and the nation as a whole. Indeed, it is a mark of Caltrans’ national leadership role in promoting the application of advanced technology to the operation of the road system that the November 5 symposium could even be held. No other state or combination of states would at this time be able to assemble a program of this breadth or depth.

All of the projects described in this symposium were sponsored by Caltrans. Approximately half of them belong to the Program on Advanced Technology for the Highway (PATH), which is conducted for the Office of New Technology and Research Management by researchers on three campuses of the University of California (Berkeley, Davis, and Irvine). The other projects, which are also part of the New Technology Development Program, are managed by other Divisions and Districts of Caltrans. The symposium is an important forum to enable these geographically dispersed researchers and research sponsors to compare notes, evaluate progress, and coordinate their activities.

We have attempted to cluster the presentations into groups by subject areas, although the boundaries between these clusters are to some extent arbitrary:

- General Transportation System Management Technologies
  - Skabardonis
  - Ritchie
  - Varaiya
  - Hockaday/MacCarley
  - Winter

- SMART Corridor(s) Related Projects
  - Rowe
  - Endo
  - Kay

- Advanced Traveler Information Systems and Human Factors
  - May
  - Jovanis
  - Mendel
  - Kitamura
  - Recker
A note on terminology:

We have used the term Advanced Traveler Information Systems (ATIS) rather than Advanced Driver Information Systems (ADIS) for reasons which relate to the need to broaden the definitions of IVHS functions. First of all, ATIS explicitly includes provision of pre-trip information about traffic conditions and transit service that can be made available to all travelers in their homes and workplaces to enable them to alter their trip making before they start a trip (change of mode, departure time, or even cancellation of trip). The benefits of these aspects of ATIS could exceed the direct benefits to drivers alone of in-vehicle information.

The symposium was organized by Professor Adolf May and Graduate Student Researcher Bruce Haldors, who devoted substantial effort to making it succeed. The participants are grateful to them for their work, which was vital to its success.
PROJECT TITLE: Control Strategies and Route Guidance in Signal Controlled Networks

AGENCY: ITS - PATH
UC Berkeley

INVESTIGATOR(S): Alex Skabardonis

OBJECTIVES:
1. Assess the impacts of re-routing traffic from freeway to surface streets.
2. Develop control strategies so that networks can handle the diverted traffic.
3. Analyze relationships between predicted impacts and network capacity and configuration.

APPROACH:
1. Literature search
2. Develop traffic diversion scenarios
3. Propose/test strategies to handle diverted traffic
4. Simulate alternatives


PUBLICATIONS: None to date.
PROJECT TITLE: Real-Time Decision Support for Traffic Surveillance and Control

AGENCY: UC Irvine DOT Transportation Center
National Science Foundation (PYI Award)

INVESTIGATOR(S): Stephen Ritchie (PI) - UC Irvine
Neil Prosser

OBJECTIVES: To develop and implement a novel artificial intelligence-based solution approach to provide operator decision support in integrated freeway and arterial traffic management systems as part of a more general Intelligent Vehicle-Highway System.

APPROACH: The approach involves the implementation of the basic components of a hierarchically-defined set of decision support modules within a distributed blackboard framework, and emphasizes the use of real-time knowledge-based expert systems (KBES). In practice, these KBES might be associated with multiple agencies, computers, traffic operations centers and traffic sub-networks, even in one corridor.

STATUS/SCHEDULE: A prototype component system named FRED (Freeway Real-Time Expert System Demonstration) has been developed for managing nonrecurring congestion on a six mile section of the SR-91 Riverside Freeway in Orange County, California. We are now in the second year (8/90 - 7/91) of this multiyear project. An interim report for Year 1 is in preparation.

PUBLICATIONS:


PROJECT TITLE: Neural Network Models for Automated Detection of Nonrecurring Congestion

AGENCY: PATH
National Science Foundation (PYI Award)
University of California - Irvine

INVESTIGATOR(S): Stephen Ritchie (PI)
Wilfred Recker
Kelvin Cheu
Martin Dix
Hogngjun Zhang

OBJECTIVES: To investigate, assess and implement neural network (NN) models from the field of artificial intelligence research for automated detection of nonrecurring congestion in integrated freeway and signalized surface street networks. The basic objective in Year 1 is to determine the feasibility of the approach in freeway incident detection, with the expectation of developing a robust technique for signalized surface streets in Year 2, and an integrated system in Year 3.

APPROACH: Literature review and in-depth assessment of conventional incident detection algorithms and NN pattern recognition model. Development and investigation of most promising NN architectures. Implementation and evaluation of selected NN’s, with training based on actual and simulated incident and non-incident data sets.

STATUS/SCHEDULE: This project has just begun. Literature reviews are underway, as is the INTRAS calibration for a six mile section of the SR-91 Riverside Freeway in Orange County, California. Actual freeway datasets are being acquired. Initial experimental NN results using synthetic data are most encouraging.

PUBLICATIONS: None to date.
PROJECT TITLE: IVHS System Architectures

AGENCY: PATH
University of California - Berkeley

INVESTIGATOR(S): Pravin Varaiya

OBJECTIVES: To develop an open systems architecture for fully and partially automated IVHS systems. The architecture will serve to frame and guide detailed work.

APPROACH: Two scenarios of IVHS systems are considered: one involving partial automation and one involving full automation. Management and control tasks are inferred. A hierarchial five layer architecture for performing these tasks is proposed. A reference model for each layer is developed.

STATUS/SCHEDULE: First version of architecture to be available in February 1991.

PUBLICATIONS: Preliminary draft available for comment.
PROJECT TITLE: Inductive Radio Demonstration Project

AGENCY: Caltrans Laboratory Skunk Works with contract to Cal Poly SLO and sub contract to IBI Group

INVESTIGATOR(S): Caltrans: Walt Winter and Skunk Works staff
Cal Poly SLO: Stephen Hockaday, Alypios Chatziioanou, Sam Taff and staff
IBI Group: Scott Stewart, Paul Lavalee, and staff

OBJECTIVES: To demonstrate the feasibility and value of short range, two-way, communications between roadway and vehicle.

APPROACH: The project will equip the existing main line traffic loop detectors by installing inductive radio transceivers on approximately five miles of the Pomona Freeway in the City of Industry. These transceivers will be mounted in STET total of 15 controller cabinets.

Approximately 20 vehicles will be equipped with inductive radio transceivers and digital front panel operator interfaces.

The controller cabinets will be connected through STET phone lines to a communications processor in the Los Angeles District office. The communications processor will be connected through dial up lines with a Traffic Operations Center (TOC) simulator at Cal Poly, San Luis Obispo.

A number of usage scenarios will be demonstrated for the use of this type of communications capability.

STATUS/SCHEDULE: The system is scheduled to be installed and field tests performed in the winter of 1991.

PUBLICATIONS: None to date.
PROJECT TITLE: The Los Angeles Smart Corridor Demonstration Project

AGENCY: The principal agencies involved are:
Los Angeles Department of Transportation
Los Angeles County Transportation Commission
California Department of Transportation
California Highway Patrol
Los Angeles Police Department
Southern California Rapid Transit District

INVESTIGATOR(S): JHK & Associates
(The System Manager)

OBJECTIVES:
- Improve Corridor Flow
- Reduce delays
- Balance the network
- Incident Handling
- Coordinated Response
- Apply Advanced Technologies
- Travel Time Reliability
- Implement Advanced Motorist Information System

APPROACH:
CONCEPTUAL DESIGN: This stage identified the various elements that could be involved in a Smart Corridor Project. Initial cost estimates and implementation plan were prepared as part of this stage.

DETAILED DESIGN: This stage involved the preparation of Plans, Specifications and Estimates of the elements identified from Stage 1. Some of these elements are: centralized signal control, freeway and surface streets traffic and video surveillance systems, changeable message signs, etc.

IMPLEMENTATION: This stage will construct and integrate the Smart Corridor elements.

OPERATION/EVALUATION

STATUS/SCHEDULE: Stage 1 was completed October 1989. Stage 2 is underway. Stage 3 for a number of the elements is scheduled to start in June 1991 and should be completed by October 1992. Stage 4 is scheduled for January 1993.

PUBLICATIONS:
PROJECT TITLE: Pathfinder

AGENCY: Caltrans
FHWA
General Motors

INVESTIGATOR(S): Goro Endo
Frank Mammano
Walter Albers

OBJECTIVES:
1. Development of Real Time In-Vehicle Displays
2. Evaluation of Drivers Response
3. Evaluation of the Vehicle as a Data Source

APPROACH:
1. Modify Off-The-Shelf In-Vehicle Navigation Devices
2. Develop Strategies for use of Pathfinder Vehicles as “Floating Car” Data Source
3. Develop and Evaluate Data Fusion Algorithm

STATUS/SCHEDULE:
Data Collection from July 1990 to Mid 1991.

PUBLICATIONS:

PROJECT TITLE: Smart Corridor Statewide Project

AGENCY: Caltrans, Headquarters with contract to JHK & Associates

INVESTIGATOR(S): caltrans: Peter Anderson  
JHK & Associates: Jack L. Kay

OBJECTIVES: The project examined the opportunities in the urban Districts of Caltrans (Districts 3, 4, 7, 8, 11 and 12) to apply the technologies identified in the Smart Corridor Demonstration project. The project resulted in a report to the legislature recommending the application of corridor concepts in congested areas where alternate routes were available.

APPROACH: The study focused on locations with existing congestion and/or accident problems and where potential alternate routes were available. The cost and effectiveness of traffic control and motorist information systems were developed and a statewide program identified.

STATUS/SCHEDULE: Project report completed and submitted to legislature.

PUBLICATIONS: Final Report dated June 1990 (copies available through Caltrans or JHK).
Symposium on ATMS/ATIS

PROJECT TITLE: Potential Benefits of In-Vehicle Information Systems

AGENCY: ITS - PATH
        UC Berkeley

INVESTIGATOR(S): Dolf May
                 Y onnel Gardes
                 Bruce Haldors

OBJECTIVES: Evaluate potential benefits of in-vehicle information systems in conjunction with different management strategies (freeway control, arterial control) in an integrated freeway/arterial corridor.

APPROACH: The SMART Corridor in Los Angeles will be simulated using the CONTRAM 5 Traffic Simulation Model.

Different scenarios to be tested include:
   • level of demand
   • percentage of IVHS equipped vehicles
   • traffic conditions (incident versus non-incident)

STATUS/SCHEDULE: Currently collecting data from the SMART Corridor and coding the network.

Preliminary results are expected by March 1991. A final report including final results is expected in June 1991.

PROJECT TITLE: The Role of Dynamic Route Guidance Information Systems in Incident Management

AGENCY: ITS - PATH
UC Berkeley

INVESTIGATOR(S): Adib Kanafani
Haitham Al-Deek

OBJECTIVES: Investigate cases when it is relevant and cases when it is irrelevant to give route guidance information under incident conditions in the network.

Study the relationship between benefits of dynamic route guidance and the fraction of vehicles equipped with route guidance information.

Compare the benefits of guided drivers and unguided drivers for different dynamic route guidance strategies.

APPROACH: Develop a deterministic queuing model to assess reduction in delay for travellers using different strategies of incident management.

Investigate all possible cases of queue evolutions when a strategy is applied.

STATUS/SCHEDULE: Working paper will be released that documents the development of the model and summarizes preliminary investigation. Expected date of publication is December 1990.


<table>
<thead>
<tr>
<th><strong>PROJECT TITLE:</strong></th>
<th>Interaction Between Highway Information Systems (HIS) and Congestion Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AGENCY:</strong></td>
<td>ITS - PATH&lt;br&gt;UC Berkeley</td>
</tr>
<tr>
<td><strong>INVESTIGATOR(S):</strong></td>
<td>Adib Kanafani&lt;br&gt;Jae Choon Lee</td>
</tr>
<tr>
<td><strong>OBJECTIVES:</strong></td>
<td>Evaluate the implementation of Highway Information Systems and Congestion Pricing.&lt;br&gt;Study the implication of Highway Information Systems and Congestion Pricing.</td>
</tr>
<tr>
<td><strong>APPROACH:</strong></td>
<td>Identify the interaction between Highway Information Systems and congestion pricing.&lt;br&gt;Develop a simulation model.&lt;br&gt;Estimate the benefits of Highway Information Systems and congestion pricing in diverse environments.</td>
</tr>
<tr>
<td><strong>STATUS/SCHEDULE:</strong></td>
<td>Model Construction complete.&lt;br&gt;Preliminary results available.&lt;br&gt;Estimation of the benefits of Highway Information Systems and congestion pricing with the model will be evaluated through March 1991.</td>
</tr>
<tr>
<td><strong>PUBLICATIONS:</strong></td>
<td>None to date; publication expected in May 1991.</td>
</tr>
</tbody>
</table>
**PROJECT TITLE:** Expanding Usage of Cellular Phones: User Profile and Transportation Issues  

**AGENCY:**  
caltrans  
ITS - PATH  
UC Berkeley  

**INVESTIGATOR(S):**  
Adib Kanafani  
Y.B. Yim  
Jean-Luc Ygance  
Rula Sadik  

**OBJECTIVES:**  
To understand the expanding market for increased electronic aids in vehicles. To study new communication technologies, such as route guidance devices, by analyzing how cellular phones affect the travel behavior of the users.

The concerns are:
1. The effects of cellular phones on travel behavior of cellular users in general.
2. The extent to which traffic and road information available through cellular phones modifies travel patterns.

**APPROACH:**  
The study is divided into three parts. Phase I concentrates on understanding the behavior of the local cellular market. ITS is currently working with GTE Mobilnet in developing a survey questionnaire for their customers in the Bay Area. The Phase II of the study will include an investigation of cellular market trends in other parts of the U.S. A comparative analysis between the U.S. and other countries will be done in Phase III.

**STATUS/SCHEDULE:**  
The Phase I study will be completed in June 1991. The questionnaire for the GTE Mobilnet customers will be distributed during the first week of January 1991. Data entry will be done by an optical scanning machine. Data analysis is expected to be completed by the end of March 1991.

**PUBLICATIONS:**  
A working paper is in progress for the background material on the effects of telecommunications technology on travel behavior.
PROJECT TITLE: Safety Implication of In-Vehicle Navigation Systems (CADIS)

AGENCY: caltrans
Transportation Research Group at UC - Davis

INVESTIGATOR(S): Paul Jovanis
Ryuichi Kitamura

OBJECTIVES: To determine the extent to which safe driving performance is influenced by navigation system attributes, driver characteristics, traffic and environmental conditions.

APPROACH: The study will use the advanced driving simulator at Hughes Aircraft Company.

Subjects will be put through a series of driving scenarios aimed at representing a range of driving conditions.

A range of alternative navigation technologies will be examined:
- “Low Technology” - paper map with directions
- Moving Electronic Map - with and without traffic data
- Heads Up Display - Route Guidance
- Optional Displays
- Voice as Supplemental Information Source

STATUS/SCHEDULE: Simulator experiments will be initiated in June 1991 due to need for simulator upgrades and contract schedule.

The following performance measures have been defined:
- Following Headway
- Deviation in Lateral Lane Position
- Ability to Route-Follow
- Reaction Time to External Events
- Eye Movement (possibly)

Developing experimental design and driving scenarios.

**PROJECT TITLE:** Rapid Prototyping of User Interfacing for ATIS  

**AGENCY:** PATH  
UC Berkeley  

**INVESTIGATOR(S):** Max Mendel  
Jim Roseborough  

**OBJECTIVES:** To create an environment where users without specialized training can rapidly prototype a control/display panel. Users can test different designs and human factors can be evaluated and tested very rapidly. Modifications to any design can be made on the go; however all designs will be constrained by standard human factors.  

**APPROACH:** Create a computer environment which will allow for:  
- direct manipulation interfacing  
- an object oriented environment  
- dynamic binding (compile separately)  
- standardized pallets  

Using NEXT STEP on the NEXT computers  

**STATUS/SCHEDULE:** Just underway.  

**PUBLICATIONS:** None to date.
**PROJECT TITLE:** Driver Responses to ATIS: A Progress Report  

**AGENCY:** Caltrans  
Transportation Research Group at UC - Davis  

**INVESTIGATOR(S):**  
Ryiuchi Kitamura  
Paul Jovanis  

**OBJECTIVES:**  
To examine a driver’s response to route-guidance and other information provided en-route by in-vehicle information systems.  

Possibly formulate a predictive model of route change behavior with en-route ATIS information.  

**APPROACH:**  
Examine the drivers decision processes.  
Focus on commute trips.  

Examine the relationship among en-route information, degree of belief and route choice behavior through:  
- in depth interviews  
- psychometric measurement  

**STATUS/SCHEDULE:**  
Report summarizing the results of a literature review, driver information components, analytical framework, methodology and experimental design.  

**PUBLICATIONS:**  
PROJECT TITLE:  A Conflict Model for Analyzing the Impacts of Real-Time Information on Driver Behavioral Choice

AGENCY:  Caltrans
PATH
UC Irvine

INVESTIGATOR(S):  Wilfred Recker
Jeffrey L. Adler
Michael G. McNally

OBJECTIVES:
1. Explain and predict real-time route assessment and adjustment.
2. Estimate impact of real-time information on driver choice.
3. Classify driving behavior and route choice by preferences and attributes.
4. Estimate driver decision protocol under real-time information.
5. Provide insights to public policy-related issues of ATIS research, development, and implementation.

APPROACH:  Focuses on measuring and predicting RECOGNITION and RESOLUTION as components of driver behavioral choice in real-time. The approach used to study this relationship is a model of CONFLICT ASSESSMENT AND RESOLUTION. A VIDEO-BASED ROLE PLAYING SIMULATION is being used to collect data for observing driver behavioral route choice in real-time.

STATUS/SCHEDULE:
1. Literature review completed.
2. Research Hypotheses identified.
3. Theoretical CONFLICT MODEL under development.
4. Prototype Video-based role playing simulation will be developed.

Anticipate completion by spring 1991.

PUBLICATIONS:  None to date.
PROJECT TITLE: Consumer Demand for IVHS Technologies

AGENCY: UC Davis

INVESTIGATOR(S): Daniel Sperling
Thomas Turrentine

OBJECTIVES: Exploratory empirical analysis of consumer attitudes toward the use and purchase of adaptive cruise control and collision avoidance systems. The larger research goal is to understand consumer demand for advanced vehicle technologies and to provide guidance to government and industry in the introduction of advanced navigational and automated technologies.

APPROACH: The use of focus group interviews to help formulate and informally test initial hypotheses.

STATUS/SCHEDULE: Completed September 1990.

PROJECT TITLE: Advanced Traffic Management Research Projects

AGENCY: California Department of Transportation (Caltrans) and Others

INVESTIGATOR(S): Various (Patrick Conroy - Caltrans Coordinator)

OBJECTIVES:


Provide Transportation Operation Center/System (TOC/S) designers and operators with timely “state-of-the-possible” ATMS evaluations based on actual field trials.

Enlist the technological capabilities of private industry, particularly the telecommunications, electronics and aerospace sectors.

Forward California’s Intelligent Vehicle-Highway System (IVHS) agenda by taking maximum advantage of Caltrans’ greatly expanded IVHS R&D resources.

Help satisfy Districts’ needs for quick implementation of TOC’s.

Foster cooperation among transportation practitioners and researchers, within Caltrans and among other partners in the public, private and academic sectors.

Test new ways of doing business in transportation operations, including public/private partnerships and privatization.

APPROACH:

Develop and implement ATIS/ATMS test packages that would meet both TOS-related needs and advance IVHS goals. Depending on funding availability, costs and breadth of packages, Caltrans hopes to undertake from two to seven test packages in FY 1990-91. Considering potential Federal IVHS funding and private industry contributions, a total of $15 million or more may be available for ATIS/ATMS research over the next three fiscal years.

STATUS/SCHEDULE:

Conceptual proposals were submitted by Caltrans districts by mid-October 1990. Proposals will be refined by December 1990. Contract documents (RFP’s, etc.) will be drafted by January 1991. Funds should be encumbered by June 1991. Project durations up to three years, with funding over three fiscal years (including FY 90-91).

PUBLICATIONS:

Project workplans, schedules, and budgets available by June 1991.
Address Phone and Fax Number List

<table>
<thead>
<tr>
<th>Name, Address, Phone and Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Steven Shladover</td>
</tr>
<tr>
<td>PATH-ITS</td>
</tr>
<tr>
<td>Richmond Field Station</td>
</tr>
<tr>
<td>1301 S. 46th Street, Building 452</td>
</tr>
<tr>
<td>Richmond, California 94804</td>
</tr>
<tr>
<td>Phone: 415-231-9495</td>
</tr>
<tr>
<td>Fax: 415-231-9565</td>
</tr>
</tbody>
</table>

| Dr. Alex Skabardonis                 |
| Institute of Transportation Studies |
| University of California at Berkeley |
| 109 McLaughlin Hall                  |
| Berkeley, California 94720          |
| Phone: 415-642-9166                  |
| Fax: 415-642-1246                    |

| Professor Stephen Ritchie            |
| Department of Civil Engineering      |
| University of California at Irvine   |
| Irvine, California 92717             |
| Phone: 714-856-4214                  |
| Fax: 714-725-2117                    |

| Professor Pravin Varaiya             |
| Department of Electrical Engineering |
| University of California at Berkeley |
| 267M Cory Hall                       |
| Berkeley, California 94720          |
| Phone: 415-642-5270                  |
| Fax: 415-643-8426                    |

| Professor Stephen Hockaday          |
| Department of Civil Engineering and |
| Environmental Engineering           |
| Cal Poly San Luis Obispo            |
| San Luis Obispo, California 93407   |
| Phone: 805-756-5062                  |
| Fax: 805-756-6503                    |

<p>| Professor Carl MacCarley            |
| Electronic and Electrical Engineering Department |
| Cal Poly San Luis Obispo            |
| San Luis Obispo, California 93407   |
| Phone: 805-756-2317                 |
| Fax: 805-756-2781                   |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Name, Address, Phone and Fax Number</th>
</tr>
</thead>
</table>
| 7    | Mr. Walt Winter  
Department of Transportation  
5900 Folsom Boulevard  
Sacramento, California 95819  
Phone: 916-739-2432  
Fax: 916-739-2822 |
| 8    | Mr. Ed Rowe  
City of Los Angeles  
Department of Transportation  
200 N. Spring Street, Room 1200  
Los Angeles, California 90012  
Phone: 213-485-2278  
Fax: 213-237-0960 |
| 8    | Mr. Alan Clelland  
JHK and Associates  
205 S. Broadway, Suite 907  
Los Angeles, California 90012  
Phone: 213-625-1522  
Fax: 213-625-1158 |
| 9    | Mr. Goro Endo  
Caltrans District 7 Traffic Systems  
120 South Spring Street  
Los Angeles, California 90012  
Phone: 213-620-3754  
Fax: 213-620-2838 |
| 10   | Mr. Jack Kay  
JHK and Associates  
P.O. Box 3727  
San Francisco, California 94119  
Phone: 415-428-2550  
Fax: 415-655-5730 |
| 11   | Professor Adolf May  
Institute of Transportation Studies  
University of California at Berkeley  
109 McLaughlin Hall  
Berkeley, California 94720  
Phone: 415-642-9063  
Fax: 415-642-1246 |
12
Mr. Jae Choon Lee
Institute of Transportation Studies
University of California at Berkeley
109 McLaughlin Hall
Berkeley, California 94720
Phone: 415-642-1694
Fax: 415-642-1246

13
Mr. Haitham Al-Deek
Institute of Transportation Studies
University of California at Berkeley
109 McLaughlin Hall
Berkeley, California 94720
Phone: 415-642-9208
Fax: 415-643-5456

14
Professor Adib Kanafani
Institute of Transportation Studies
University of California at Berkeley
109 McLaughlin Hall
Berkeley, California 94720
Phone: 415-642-3585
Fax: 415-642-1246

14
Dr. YB Yim
Institute of Transportation Studies
University of California at Berkeley
109 McLaughlin Hall
Berkeley, California 94720
Phone: 415-642-9216
Fax: 415-643-5456

15
Professor Paul Jovanis
Department of Civil Engineering
University of California at Davis
166 Everson Hall
Davis, California 95616
Phone: 916-752-5404
Fax: 916-752-7872

16
Professor Max Mendel
Department of Industrial Engineering and Operations Research
University of California Berkeley
Etcheverry Hall
Berkeley, California 94720
Phone: 415-6424989
Fax: 415-643-5456
<table>
<thead>
<tr>
<th>Page</th>
<th>Name</th>
<th>Address</th>
<th>Phone and Fax Number</th>
</tr>
</thead>
</table>
| 17   | Professor Ryuichi Kitamura | Department of Civil Engineering  
University of California at Davis  
Davis, California 95616  
Phone: 916-752-7435  
Fax: 916-752-7872 | |
| 18   | Professor Wilfred Recker | Institute of Transportation Studies  
University of California at Irvine  
Room GSM427  
Irvine, California 92717  
Phone: 714-856-5642  
Fax: 714-856-5451 | |
| 19   | Mr. Thomas Turrentine  
University of California Davis  
Department of Environmental Studies  
Davis, California 95616  
Phone: 916-752-3026  
Fax: 916-752-7872 | |
| 19   | Professor Daniel Sperling  
Civil Engineering Department  
214 Walker Hall  
University California at Davis  
Davis, California 95616  
Phone: 916-752-7434  
Fax: 916-752-7872 | |
| 20   | Mr. Pat Conroy  
Department of Transportation  
5900 Folsom Boulevard  
P.O. Box 19128  
Sacramento, California 95819  
Phone: 916-454-6581  
Fax: 916-454-6595 | |